THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5540 Advanced Geometry 2016-2017
Suggested Solution to Assignment 1

1. Length of the curve $=\int_{0}^{2} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\sqrt{17}+\frac{1}{4} \ln (4+\sqrt{17})$
2. Length of the curve $=\int_{0}^{3} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d t=2 \sqrt{65}+\frac{1}{4} \ln (8+\sqrt{65})-\frac{\sqrt{5}}{2}-\frac{1}{4} \ln (2+\sqrt{5})$
3. To prove the statement, it suffices to prove that if the relation \sim is reflexive, the relation \sim is symmetric and transitive if and only if the relation \sim satisfies the second condition.
$" \Rightarrow "$ Assume that the relation \sim is reflexive, the relation \sim is symmetric and transitive.
Suppose that $a \sim b$ and $a \sim c$.
By symmetry, we have $b \sim a$. Also, by transitivity, $b \sim a$ and $a \sim c$ implies $b \sim c$.
$" \Leftarrow "$ Assume that the relation \sim satisfies the second condition.
Suppose that $a \sim b$.
Together with $a \sim a$, we have $a \sim b$ and $a \sim a$, it implies $b \sim a$ by the second condition.
Therefore the relation \sim is symmetric.
Suppose that $a \sim b$ and $b \sim c$.
By symmetry as shown above, we have $b \sim a$. Then $b \sim a$ and $b \sim c$ implies $a \sim c$ by the second condition. Therefore the relation \sim is transitive.
4. (a) The statement is true. Let A and B are distinct points, consider the perpendicular bisector of the line segment $A B$, then A and B lie on the opposite side of it.
(b) The statement is false. If A, B and C are three distinct points that are collinear, then there exists no circle passing throught all of them.
5. (a) Let a, b and c be integers.

Since $a-a=0$ which is divisible by $n, a \sim a$.
Suppose that $a \sim b$, then $b-a=n p$ for some integer p.
Then $a-b=-n p=n(-p)$ which is divisible by n, so $b \sim a$.
Suppose that $a \sim b$ and $b \sim c$, then $b-a=n p$ and $c-b=n q$ for some integers p and q.
Then $c-a=(c-b)+(b-a)=n(p+q) . p+q$ is an integer, so $c-a$ is divisible by n and $c \sim a$.
As a result, \sim is an equivalence relation.
(b) $\mathbb{Z}_{n}:=\mathbb{Z} / \sim=\{[0],[1], \cdots,[n-1]\}$.
(c) It suffices to show that if $a \sim a^{\prime}$ and $b \sim b^{\prime}$ then $a+b \sim a^{\prime}+b^{\prime}$.

Suppose that $a^{\prime}-a=n p$ and $b^{\prime}-b=n q$ for some integers p and q.
Then $\left(a^{\prime}+b^{\prime}\right)-(a+b)=n(p+q) . p+q$ is an integer, so $\left(a^{\prime}+b^{\prime}\right)-(a+b)$ is divisible by n and $a+b \sim a^{\prime}+b^{\prime}$.
(d) $[21]+[35]=[21+35]=[56]=[2]$.

Alternative method: $[21]+[35]=[3]+[5]=[8]=[2]$.
6. (a) $\phi(s)=\sqrt{(10-2)^{2}+(11-3)^{2}}=8 \sqrt{2}$.
(b) It follows from the fact that equality of real numbers is an equivalence relation.
7. (a) $d((1,-2),(-3,4))=\max \{|-3-1|,|4-(-2)|\}=\max \{4,6\}=6$
(b)

(c) $d((1,-2),(-3,4))=|-3-1|+|4-(-2)|=4+6=10$

